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Abstract

We describe a gapped structural threading method starting from aligning the query protein sequence to the dominant eigenvector of the

structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure

alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology

without relying on sequence similarity. The sensitivity and specificity of this method are discussed, along with a case of blind test prediction.

This method will provide a versatile tool for protein structure prediction and protein domain recognition complementary to existing tools that

rely on sequence homology.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Globular proteins form unique three dimensional struc-

tures under natural conditions. With few exceptions, the

native structure of a protein is determined only by its amino

acid sequence [1]. Nevertheless, to predict the unique native

structure of a protein given its amino acid sequence (i.e.

protein folding problem) remains an outstanding challenge.

Although naturally occurring proteins can have dramati-

cally different structures, related groups of proteins often

share a global folding topology. A number of databases

exploit this to classify known proteins according to their

structural similarities [2–4]. In the ASTRAL database [4],

for example, more than 27,000 known proteins are classified

in a hierarchical way. The five structural levels assigned by

this database are protein subfamilies, families, super-

families, folds, and classes in the order of decreasing

similarity among members. When two proteins belong to

the same family, they generally share similar biological

functions and exhibit significant sequence similarity which

can be detected by sequence comparison tools like

PSIBLAST [5]. The average root mean square deviation

(RMSD) between different protein structures from the same

family is usually under 1 Å. At the superfamily level,

proteins have much higher RMSD (around 5 Å) and

generally low sequence similarity even though they share

a similar global folding topology. When a sequence

alignment method is used among these proteins, the

sequence identity generally falls into the ‘twilight zone’

(below 20% amino acid identity) where the linkages among

these remotely homologous structures cannot be estab-

lished. The structural threading method we introduce in this

paper aims to identify these remotely homologous structures

from other unrelated known structures.

When a protein is in its natural environment, it is

generally believed that the native state corresponds to the

global minimum of the free-energy of the protein molecule.

Studies of the protein folding process suggest a global

collapse followed by fine tuning of the structure around the

native global free-energy minimum [6–10]. From studies of

lattice models, Chan and Dill [11,12] proposed that proteins

correspond to highly atypical polymer sequences with a

well-defined unique free-energy minimum configuration

separated from other configurations by a relatively large

energy gap. A funnel-like energy landscape for protein
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folding was also proposed by Wolynes and co-workers [13].

Therefore, it is reasonable to assume that, when a protein

folds into a three-dimensional structure similar to its native

structure, it should have lower free energy compared with

misfolded structures. Thus, the native structure for a given

protein sequence can be inferred by threading the sequence

on known protein structures and calculating the energy for

each threading. If a target protein’s native structure is

similar to a known structure in the database, then the

threading energy should be lower than those of other

structures in the database. Thus the global fold of the protein

can be recognized.

Hendlich et al. [14] introduced, in 1990, a threading

method to test sequence-structure compatibility. A number

of schemes for structural threading have been proposed over

the past 13 years [15–22,29,30,46,47]. The basic idea of

threading is to assume that a query protein sequence takes

on the three-dimensional conformation of a template

structure. This is a one-dimensional to three-dimensional

(1D–3D) alignment since the ordering of the original

sequence is required to remain unchanged in the threading

process. The difficulty of this problem depends on whether

‘gaps’ are allowed in the alignment process or not. Early

work generally involved gapless threading [17,20] in which

insertions and deletions were not considered. For gapless

threading, it is possible to enumerate all possible align-

ments, however, generally this approach cannot provide

competitive decoys [23,24]. While it can pick out the native

fold from a collection of structures, it is not good at

identifying closely-related proteins even when the structural

similarity is high. When gaps are introduced in the

alignment process, a simple dynamic programming method

[25–27] cannot be used without significant modifications

due to the long-range (in terms of sequence separation)

interactions of the residues in the threaded structure. Godzik

and Skolnick [18] proposed the ‘frozen approximation,’ in

which the residue’s environment is evaluated using the

native sequence of the threaded structure instead of the

query sequence. Then, a conventional dynamic program-

ming method can be used for the sequence-structure

alignment. This approach can be viewed as a way to make

a 1D structural profile on which the sequence can be

aligned. By modifying the structural profile according to the

alignment obtained in the previous step, the threading result

can be improved in an iterative manner [28]. A number

of threading schemes have been proposed using various

ways to obtain structural profiles [29,36,42,47]. Apart

from this profiling approach, Jones et al. [16] used a

double dynamic programming method to find the

optimum sequence-structure alignment. A search algor-

ithm for getting global optimum threading method was

also devised by Lathrop and Smith [30] using a branch-

and-bound approach.

When the optimum sequence-structure alignment is

achieved, the accuracy of the threading method depends on

the interaction scheme used for calculating the free energy of

the system. Many kinds of interactions are involved in the

protein folding process, including hydrophobic interactions,

hydrogen bond interactions, electrostatic interactions, and

covalent bond interactions. An interaction scheme, which

involves atomic details, is not suitable for the purpose of

structural threading because amino acids on the template

structure are replaced by different types of amino acids from

the sequence of query protein. Also, because threading studies

may examine many (20,000 or more) sequence-structure pairs,

an effective residue–residue interaction that captures the

dominant interaction of the protein folding process is

important for this purpose.

The driving force for protein folding has been the topic of

many discussions. Mirsky and Pauling proposed in 1936

that hydrogen bonds determine the structure of proteins

[31]. In 1950s, Walter Kauzmann proposed that the

dominant driving force for protein collapse is the hydro-

phobic interaction [32]. This point of view is adopted in

lattice-protein-models studies by Chan and Dill [11,12,39,

40]. In the simple H–P model, the interaction energy is a

two letter alphabet (H for hydrophobic residues and P for

polar residues) pairwise contact energy. When two residues

are within a specified cutoff distance (in lattice models,

contact is defined as when the two residues are neighbors to

each other), a contact energy is assigned according to the

characters of the residue pair (e.g. hydrophobic–hydro-

phobic (H–H) contacts have energy 21, polar–polar (P–P)

and hydrophobic–polar (H–P) contacts have energy 0). The

total energy is the sum of all pairwise contact energies of the

conformation. A more detailed 20 alphabet residue–residue

interaction was proposed by Miyazawa and Jernigan [33,

34]. They applied a quasi-chemical approximation to the

relative abundance of different types of residue–residue

contacts in existing structures in the protein data bank

(PDB) to produce a table of residue–residue contact

energies among the 20 amino acids: the MJ matrix [33,

34]. Various other empirical interaction energy forms have

also been proposed and tested by different groups [20]. Li,

Tang, and Wingreen showed that the Miyazawa–Jernigan

(MJ) matrix can be factorized and interpret the resulting

form of the interaction to show that hydrophobic interaction

is the dominant factor in the MJ interaction matrix [38].

Local interactions to stabilize secondary structures in the

native state of the protein are also important in determining

the three-dimensional structures of proteins. Miyazawa and

Jernigan [35] showed that it is possible to distinguish native

structures from other decoy structures using a gapless

threading method when the secondary structure energy is

included [35]. Here we propose a two-step structural

threading method. In the first step, the query sequence is

aligned onto the target structure by optimizing the overlap

of the sequence vector and the dominant eigenvector of the

target structure contact matrix. In the second step, the

threading energy is calculated based on the alignment

obtained in the first step.
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2. Method

2.1. Energy functions

The interaction energy used in this paper follows the Li,

Tang, Wingreen [38] parameterization of the MJ matrix. In

the HP and the MJ models, the interactions are ‘contact’

interactions. In calculations of the free energy, a three-

dimensional protein structure can be represented by a

contact map. For a protein containing N residues, the

contact map is a N £ N matrix with element ði; jÞ whose

value is 1 if the ith residue and jth residue are in contact,

otherwise, the element is set to 0. We choose 6.5 Å as the

contact cutoff distance in accordance with the MJ matrix.

Through eigenvector analysis of the MJ matrix, Li, Tang,

and Wingreen showed that the interaction energy can be

written in the form

E ¼ c1ðqi þ qjÞ þ c2qiqj þ constant ð1Þ

Thus, the 210 different residue–residue interactions in the

MJ matrix are not entirely independent but can be described

approximately by 20 parameters. This can be written in a

factorized form

E ¼ c2ðqi þ aÞðqj þ aÞ þ K ð2Þ

where K and a are constants independent of residue type.

The additive constant K has no effect on the output of the

structural threading and will be eliminated hereafter in this

paper. From Eq. (2) we can redefine modified q values as

qi þ a; then Eq. (2) can be written as: E ¼ c2qiqj þ K: We

will refer to this modified q value as qi in the rest of this

paper. If we represent a protein sequence vector s by the q

values of its amino acids qi; for a given alignment after

threading a sequence on a template structure, the confor-

mation energy can be written as

E ¼
Xn

i;j¼1

q0
iCi;jq

0
j ð3Þ

where Ci;j is the contact matrix of the structure and q0
i is the

aligned sequence vector s0.

2.2. Alignment

The problem of finding the best alignment of a query

sequence s for a structure with contact matrix C is to find a

transformation from s to s0 that optimizes the free-energy

function (3). The transformation has to be performed under

the following restrictions

1. ls0l # lsl i.e. no added residues can be introduced.

2. the ordering of the sequence must be kept.

Mathematically, if the residue types are not restricted to

the 20 naturally occurring amino acids and the two

threading restrictions are ignored, the sequence vector can

span the whole N dimensional real space. This modified

problem is readily solved. The optimum s0 is the dominant

eigenvector v0 of the contact matrix C (see Appendix).

Under the threading restrictions, the phase space of s0

consists of discrete points in the N dimensional space. If

the native structure of the query protein is similar to that of

the template structure being considered, we may expect the

resulting transformed vector s0 to be located close to v0.

We will discuss in detail the evidence for the correlation

between a protein sequence and the dominant eigenvector of

its native structure’s contact matrix in another publication.

Here we propose that the transformation we are seeking can

be obtained by maximizing the correlation between s0 and v0

ðs0·v0Þ
2

ðs0·s0Þðv0·v0Þ
ð4Þ

This is an alignment problem, and the dynamic program-

ming method in sequence alignment can be readily adopted

to solve this problem. The process can also be viewed as

using v0 as a profile.

2.3. Iteration

The step of aligning with v0 will produce a transformed

vector s0 which is close to v0. The ultimate solution smax also

sits close to v0. This makes us believe that the transform-

ation we get is close to the optimum solution. Further

improvements can be achieved by an iteration scheme

described below. The contact matrix energy function (3) can

be rewritten as E ¼ s0·A; where A ¼ C·s0: If the vector A is

known, the transformation from s to s0 is an alignment

problem. On the other hand, A can be found by using the

contact matrix C to transform the vector s0. This makes it

possible to use an iterative method to optimize the s ) s0

transformation we need. Starting with v0 as the initial guess

for A0, alignment with sequence vector s gives s01. From s01
transformed by C; we can get A1 ¼ C·s01; and repeat the

process of alignment. This iterative procedure can be

repeated until An and Anþ1 converge. This iteration process

is similar to commonly used iterative methods for finding

the eigenvectors of a symmetrical matrix [41]. Because of the

involvement of the alignment process and the restrictions on

the choice of s0, the convergence of the iterative process is not

mathematically guaranteed. In order to get a final converged

alignment, the initial guess is important. In our work, we used

for initial guesses not only the eigenvector with the largest

eigenvalue but also repeat the calculation with each of top four

eigenvectors of the contact matrix as well as the vector

corresponding to the frozen approximation. This improves the

chance of getting a converged result.

2.4. Gap penalty and size effects

For any method involving gapped alignment, the

outcome is affected by the penalty for insertion/deletion.
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In the work of Lathrop and Smith [30], the structure is

divided into two regions: regions with well-defined

secondary structures and loop regions. Insertions and

deletions are forbidden in the secondary structure

regions and no gap penalties are assessed in the loops.

We follow a similar approach. In our work, the

threading is divided into two steps. In the first step,

the sequence is aligned to the vector A, and then in the

second step, the score is calculated using the resultant

alignment. After some tests, we found that the

performance of the scheme is optimized when we

include gap penalties only in the alignment step and not

in the energy calculation step. In the alignment step,

insertion/deletion in the coil region have small penal-

ties, while gaps in the secondary structure region are

strongly penalized. Using this gap penalty system, we

allow the possibility of making big ‘jumps’ in the

threaded structure without serious disruption of the

secondary structure. Using our threading method, a

substantial portion of the threaded structure can be

removed without severe penalty as long as the contact

score stays high.

We adopt a similar treatment of size effects. Size

penalties are included only in the alignment step and not

in the final score calculation. We obtained an average size

for each amino acid from the PDB. If a residue in the

template structure is replaced by a residue in query sequence

whose size differs by 0.5 Å or more in radius, the alignment

contribution for that alignment pair is reduced if that residue

has three or more contacts in the threaded structure. The

alignment score penalty is bigger as the discrepancy in size

increases.

The process of including gap and size penalties only in

the alignment step has the advantage of removing threading

alignments with unphysical gaps and packing from

consideration without putting too many parameters into

the energy calculations.

2.5. Secondary structure energy

Hydrogen-bonds in the secondary structure region play

an important role in helping to stabilize the native structure

[16]. Miyazawa and Jernigan pointed out in their paper [34]

that inclusion of secondary structure energy helps to

distinguish native structures from other decoy structures.

In this work, we use a ‘global fitness’ factor to take this

interaction into account. To calculate this factor, we first

obtain a secondary structure prediction for the query

sequence using secondary structure predictors such as

PSIPRED, PROF, JPRED, and SAM. The global fitness is

then defined as: f ¼ Nþ 2 N2=Ns where Nþ is the total

number of matches between the predicted secondary

structure and the threaded structure. N2 is the total number

of mismatches, and Ns is the total number of residues in the

threaded structure selected in the alignment. We define a

modified energy of the form: Emodified ¼ afEthreading where a

is a parameter which can be optimized for accuracy of fold-

recognition.

2.6. Raw score and relative score

The negative of the modified energy obtained above is

taken to be the raw score for the threading. Thus, a high

score denotes a structure with favorable energy. The raw

score can contain systematic biases that lead to inaccuracies

in identifying sequence-structure relationships. In compar-

ing different structures, structures with more contacts tend

to have higher scores than structures with fewer contacts. In

comparing different sequences, sequences that have a higher

percentage of hydrophobic residues tend to have higher

scores. Thus, a high raw score does not automatically mean

a high compatibility between the sequence and the threaded

structure.

Work by Bryant and Altschul [37] and Meller and Elber

[42] showed that the accuracy of threading method can be

Table 1

174 protein sequences used in self-recognition test

153l 1a0b 1a0i 1aa0 1aa2 1aa3 1aac 1aba 1ad2 1ads

1af7 1ag2 1ag4 1ah7 1ahk 1aho 1ajj 1ak1 1ako 1akz

1al3 1aly 1amp 1anu 1anv 1aol 1aop 1arv 1aua 1awd

1awj 1axn 1bdo 1beo 1bgp 1bkf 1bor 1bp1 1btn 1bv1

1cem 1cfb 1chd 1cid 1csh 1ctj 1cyx 1dad 1ddf 1dhs

1div 1dru 1eca 1ehs 1erv 1eur 1fbr 1fdr 1fkx 1fna

1gai 1gin 1goh 1gpc 1grj 1gvp 1hcd 1hfc 1hjp 1hoe

1htp 1hxn 1idk 1ido 1igd 1irk 1irl 1iso 1itg 1ixh

1jdw 1jli 1kaz 1kid 1knb 1kte 1kuh 1kvu 1lba 1lbu

1lcl 1lit 1lki 1ll1 1lml 1lxa 1mml 1mrj 1mrp 1msk

1mxa 1mzm 1nif 1nls 1nom 1nox 1npk 1nre 1ois 1opd

1opr 1pax 1pbn 1pex 1phc 1php 1pkn 1plc 1plr 1pmi

1poc 1pot 1ppn 1ppt 1prr 1pta 1ptq 1quf 1ra9 1rcf

1res 1rgs 1rie 1rlw 1rmd 1rmg 1rnl 1rss 1ryt 1sig

1sly 1sra 1svb 1tca 1tfe 1tfr 1tib 1tif 1tml 1tsg

1tul 1ubi 1uby 1uch 1utg 1uxy 1vcc 1vhh 1vif 1vin

1vls 1vsd 1vvc 1wer 1whi 1xnb 1ysc 1ytw 1yub 1zid

1zin 1zxq 2i1b 5p21
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improved by using the Z-score instead of the raw score for

the selection of candidates. In this approach, after a

sequence-structure threading is obtained, the query

sequence is randomly shuffled and threaded again on the

same structure. The Z-score is obtained by ðEraw 2 EaveÞ=s;

where Eraw is the result of the sequence-structure threading,

and Eave and s are the average and standard deviation

respectively of the results from the randomly shuffled

sequences. In order to eliminate some of the biases inherent

in raw scores, we take an approach similar to the Z-score

scheme by computing a relative score, which we use for our

selection criterion. The ‘relative score’ is defined by Erel ¼

Eraw 2 Eave where Eave is the average score obtained by

randomly shuffling the protein sequence and threading again

on the target structure. We find that relative scores give

better discrimination among structures. The use of the

relative score may be rationalized from the thermodynamics

of protein folding. When a protein folds, it is not the raw

final energy which makes the structure different from its

denatured states, but the energy difference between the

native energy and that of the molten-globule states. For a

randomly-shuffled sequence, we would expect the native

structure to have a free energy similar to the molten-globule

configurations. Thus, we can model the average energy of

the molten globule by the average of the threaded energies

of the randomly shuffled sequences on the native structure.

Erel can be viewed as the ‘energy gap’ between the native

structure and its molten-globule competitors. Erel is

obviously closely related to the Z-score used in other

threading studies. However, operationally, relative scores

converge much more rapidly with the number of shuffled

sequences than the Z-score because Erel does not involve the

standard deviation (which converges much more slowly

than the average score).

3. Results and discussion

We have performed a series of tests to benchmark the

above method and scoring scheme. In the first test, we

randomly selected 174 proteins from PDB. These proteins

are listed in Table 1. We restricted ourselves to those

proteins which have experimental resolution better than

1.5 Å and a single peptide chain to avoid any possible inter-

chain interactions. For each protein sequence in this set, we

perform threading calculations on all of the 174 template

structures, a process we call ‘cross threading’. The self-

threading score is compared with the best decoy threading

score. We found that the native structures always give better

scores (higher Erel values) than any decoys in this selected

protein set. The self-threading score exhibits a well-defined

linear relationship as a function of the sequence length as

shown in Fig. 1. The reason for the linear correlation is that

the number of contacts of a native protein structure is

roughly proportional to its sequence length. By taking this

into account, we can compare threading results of proteins

with different lengths.

A more challenging test for the threading method is

homolog-recognition. The above test of self-recognition

depends more on the scoring function than alignment

process because a gapless threading method would be able

to provide similar results. We choose nine families from the

ASTRAL database from which we selected 86 proteins

Fig. 1. Relationship between relative score Erel and protein length. 174

randomly chosen proteins were self-threaded (see text). The relative score

for each protein is plotted against the number of residues of that protein. A

linear correlation between self-threading score and number of residues of

the protein can be observed.

Table 2

86 proteins from nine families in ASTRAL database used in homolog-

recognition test

Domain Family Protein sequence chosen

a.1.1.2 1a6m 1ash 1babB 1ch4A 1d8uA

1eca 1eco 1ew6A 1flp 1hlb

1irdA 1it2A 1ithA 1kfrA 1vhbA

2gdm 2hbg 2lhb

a.3.1.1 1c6oA 1cie 1crg 1ctj 1f1cA

1hh7A 1irv 1yeb

b.1.1.1 1ah1 1akjD 1eajA 1fo0A 1gya

1i85A 1neu 1qfoA

b.3.1.1 1a47-2 1ac0 1b90A1 1cdg-2 1cqyA

1cyg-2 1d7fA2 1qhoA2 5bcaB1 8cgtA2

c.2.1.1 1a71A2 1agnA2 1cdoB2 1e3eA2 1e3jA2

1gpjA2 1kevA2 1qorA2 1ykfC2

c.3.1.1 1cjcA1 1djnA2 1h7wA3 1h7xA3

d.1.1.1 1aqzA 1ay7A 1bu4 1bujA 1fus

1rds 1rtu 1yvs

d.3.1.1 1aec 1aim 1atk 1bp4 1cjl

1cpjA 1cqdD 1cv8 1dkiB 1fh0A

1gecE 1meg 1pbh 1qdqA 1yal

e.1.1.1 1a7cA 1atu 1imvA 1jtiA 1qmnA

1sek
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listed in Table 2. Proteins belonging to the same family are

homologous and generally have greater than 20% sequence

identity, thus a sequence alignment method (e.g. PSI-

BLAST) can detect the similarity among them. We

performed a cross threading test using this 86 protein set.

For each query sequence, Ehom
i is defined as the highest

threading score among the homologous structures, Edec
i is

defined as the best threading score among all the rest of the

decoy structures. We rescale Ehom
i and Edec

i according to

their threading score on native structures Enat
i : A plot of

Ehom
i =Enat

i against Edec
i =Enat

i is shown in Fig. 2. For 83 out of

86 cases, Ehom is clearly much higher than Edec: For the

remaining three cases, the native structure cannot be

distinguished from the best decoy structure. This might

be a result of inaccuracy of the scoring function we used.

The above tests give us confidence that when a given

template structure has a native sequence which is similar to

the query protein sequence, our method can distinguish it

from random decoy structures without using the sequence

information. In the next test, we want to investigate the fold

recognition capability of our method for proteins with low

sequence similarity. It is well known that structural

similarity does not necessarily require sequence similarity.

Proteins in the ASTRAL database, which belong to the same

superfamily but different families generally share similar

global structure, but have low sequence identity not

detectable by sequence comparison methods. In some

cases, even proteins in the same family have such divergent

sequences that the structural homology cannot be detected

Fig. 2. Cross threading test of homolog recognition. 86 protein sequences

are chosen from nine different families in the ASTRAL database. Each

sequence is threaded on the structure of the other 85 proteins. The highest

threading score obtained when a sequence is thread on protein structures in

its own family is used to represent the homologous threading score Ehom:

The decoy threading score Edec; is the highest threading score obtained

when the sequence is threaded on decoy structures (not in the same family).

Homologous threading score Ehom is plotted against decoy threading score

Edec using the self-threading score Enat as unit for each sequence. Points

above the diagonal represent cases in which structural homologos are

distinguished from decoys.

Table 3

Protein structures used in remote-homolog-recognition test

Domain family Sequence in the family Superfamily Structures in the Superfamily

a.1.1.2 1flp 1kfrA 2hbg 1a6m a.1.1 1phnA 1cpcA 1i7yA

1eco 2gdm 1d8uA 1irdA 1gh0A 1allA 1b33A

1babB 1ch4A 1it2A 2lhb 1liaA 1b8dA 1qgwC

1ash 1ithA 1hlb 1vhbA 1kr7A

1ew6A

b.1.1.1 1ah1 1ah1 1akjD 1eajA b.1.1 1frtA1 1bmg 1a6zB1 1ld9A1

1fo0A 1gya 1i85A 1neu 1b3jA1 1c16B1 1exuA1 1exuB1

1qfoA 1igtA2 1ij9A1 2ncm 1tlk

1tnn 1wiu 1tiu 1gl4B

1qtyY 1wwaX 1hcfX 1fcgA1

1f2qA1 1efxD1 1g0xA1 1f45A1

1jbjA2 1eh9A1 1evuA1 1cc0E

1gdf 1ksgB 1ayrA1 1a02N1

1bftB 1h6uA1 1ehxA 1im3P

1jjuA3

c.2.1.1 1a71A2 1agnA2 1cdoB2 1e3eA2 c.2.1 1kvq 1fjhA 1bdb 1a4uA

1e3jA2 1gpjA2 1kevA2 1qorA2 1gcoA 1h5qC 1i01A 1ae1A

1ykfC2 1dohA 1hdoA 1hu4A 1gpdG1

1brmA1 1dapA1 1arzA1 2nacA1

1qp8A1 1gdhA1 1psdA1 1sayA1

1f8gA1 1b3rA1 1mldA1 1hyhB1

1hyeA1 1qmgA2 1f0yA2 1dljA2

1evyA2 1ks9A2 1jaxA 1bgvA1

1lehA1 1bw9A1 1a4iB1 1ee9A1

1do8A1 1id1A 1cqiA1
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by sequence-based recognition methods. For example, the

TNF-like family includes both tumor necrosis factor (TNF)

ligand domains as well as complement 1q (c1q) proteins.

The structural relationship between these two families of

proteins was not recognized by sequence-based methods

such as PSIBLAST and hidden-Markov-model methods

such as PFAM. Because we designed our method to use only

structural information, we believe that it can distinguish

such similar structures from random decoy structures. To

test this, we chose three superfamilies (a.1.1, b.1.1, c.2.1)

from ASTRAL database. They belong to three different

folding classes: all alpha (a), all beta (b) and mixture of

alpha/beta (c, which is mainly beta sheets). One family is

chosen from each of these superfamilies: a.1.1.2, b.1.1.1,

and c.2.1.1 respectively. A test set of 34 sequences listed in

Table 3 were chosen from the three selected families.

Structures belonging to the same superfamily but different

families are selected as structural homologs (see Table 3).

Each sequence from the chosen sequence set is threaded on

all the chosen structures. For each sequence in the test set,

we define Ehom as the threading score obtained when the

sequence is threaded on structures within the same family.

In order to assess the noise background, we used the 86

protein structures in the homolog-recognition test to provide

decoy structures. Edec is the highest threading score among

all decoy structures (i.e. structures not in the same

superfamily as the test sequence). The remote homologous

threading score Eremote is the highest threading score

obtained on structures within the same superfamily but

not in the same family. Histograms of Ehom; Eremote; Edec

normalized by the self-threading score are plotted in Fig. 3.

Comparing Fig. 3(a) and (c), we can see that the distribution

of Ehom is well separated from the Edec distribution. This

result is very similar to that obtained in the homolog-

recognition test described above. The wide distribution of

the Ehom could be the result of the inaccuracy in either the

alignment step or the scoring scheme.

The result of the remote homolog recognition can be seen

by comparing Fig. 3(b) with Fig. 3(c). The center of

distribution of Eremote is well separated from that of Edec;

although the high score tail of Edec overlaps with the low

score tail of Eremote: Thus, at least half of the remote

structural homologs can be recognized using this structural-

threading method.

Because the above tests are done using an existing

database of proteins with known structures, we cannot

ignore the fact that the results may be to some extent biased

by the existence of the final structure in the known database.

The CASP5 [44] competition provided us with a chance to

do a ‘blind test’ of our threading method. In CASP5,

sequence of target proteins whose structures have not yet

been published are given to participants for prediction. We

will discuss one of our successful predictions. The target

T174 is one of the difficult targets according to the CASP5

assessment. There are two domains in this protein structure:

T174_1 and T174_2. Of all the predictions submitted to

CASP5 by various groups, domain T174_1 has the lowest

average score and correct alignment percentage, and the

T174_2 domain ranks in the lowest 11% of average scores

among the 83 domains predicted in CASP5.

Structurally, the T174_2 domain belongs to the d.14.1.5

ASTRAL family, but has very low sequence identity (10%)

with its structural homologs. In our blind test prediction of

T174, we prepared a representative structure database for

threading by selecting structures from the ASTRAL

database. When a family in ASTRAL database has more

Fig. 3. Cross threading test of remote homolog recognition. 34 protein

sequences belonging to three different families are chosen from ASTRAL

database. Histograms of Ehom (a) Eremote (b) and Edec (c) normalized by self-

threading score are shown. (a) Ehom : each of the 34 protein sequences is

threaded on protein structures in its own family. The highest threading

score of each sequence is plotted in this histogram. (b) Eremote : each of the

34 protein sequences is threaded on protein structures belonging to the same

superfamily but different family (i.e. remote homologs). (c) Edec : each of

the 34 protein sequences are threaded on structures randomly chosen from

other superfamilies (decoys). In all histograms, the highest threading score

for each sequence is plotted.
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than 20 protein structures, we randomly choose 20 among

them to reduce the redundancy but retain enough repre-

sentatives to collect sufficient statistics to overcome the

noise from decoy structures. Around 15,000 structures were

included in our template structure dataset.

In the CASP5 blind test, the entire T174 sequence is

provided without any knowledge of the domain boundary.

We selected all continuous 120 amino acid segments of

T174 sequence shifted by intervals of five residues. The

choice of 120 is based on examination of the number of

ASTRAL domains as a function of domain size. There is a

peak in the distribution around 120. Thus we have a good

chance of including a large portion of a single domain of the

T174 sequence in some of our cuts. Every segment is

threaded against all of the template structures to produce a

segment-structure alignment score. For each structure, the

threading energies of all segments on that structure are

compared. The highest Emax score is used to represent

the threading score of the structure. A histogram showing

the distribution of Emax scores is plotted in Fig. 4. The

histogram takes a shape similar to a normal distribution. The

best score was obtained by threading one of the partial

sequences on a domain structure, which belongs to the

ASTRAL family d.14.1.5. The high score end of the

histogram is plotted in the inset of Fig. 4. The abundance of

the d.14.1.5 family structures (indicated in black) in the high

end of the distribution indicates that the high threading score

for d.14.1.5 is not due to statistical noise. The aligned part of

the segment is then extended to the whole sequence and

submitted to the CASP5 as our prediction for the T174

structure. Fig. 5 compares the experimentally determined

structure (a) of the T174_2 domain with our prediction (b).

There are clear global similarities, with close arrangements

of a helix and b sheet. The Dali Z-score [45] for structural

similarity between the two structures is 8.9 (The higher the

Dali Z-score the more similar the structures. A Dali Z-scores

of 2.0 or higher indicates structure similarity between the

two structures being compared). The alignment is not

completely right, about 34% of the residues are aligned in

the correct positions.

In order to analyze the sensitivity and specificity of this

method, we used the 34 proteins from the remote homolog

recognition test as our query sequences, and the representa-

tive structures used in CASP5 as a structure database.

Structures that do not belong to the same superfamily

as a query protein’s native structure, are treated as

decoy structures for the query protein. We excluded decoy

structures with significant structural similarity to native

structures (i.e. Dali Z-score greater than 2.8) of the query

proteins (if the target structure is not in the same

superfamily as the query sequence). This resulted in a set

of more than 10,000 structures with much more competitive

decoy structures than the dataset used in the remote

homolog recognition test. We rescaled the score for each

query sequence threaded on a template structure according

to its threading score on its native structure. For a given

cutoff score, a ‘true positive’ is obtained when a query

sequence threaded on a remote homolog structure (within

the same superfamily as the query sequence in ASTRAL

database, but in a different structural family) results in a

score higher than the cutoff. Otherwise, it is treated as a false

negative. Similarly, when a query sequence threaded on a

Fig. 4. Distribution of Erel scores for CASP5 targer T174_2. Segments of T174 sequence with length 120 (continuous) were threaded on representative

ASTRAL database structures (see text). For each structures, the highest segment-structure alignment Erel score is used to represent the threading score of that

structure. Histogram of the threading energies of all the representative database structures is plotted. The high relative score tail of this histogram is enlarged in

the inset. The dark bins in the inset belong to the structures from ASTRAL family d.14.1.5.
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decoy (i.e. not similar) structure results in a score higher

than the cutoff, it is treated as a false positive. Otherwise, it

is treated as a true negative. We define sensitivity ¼

TP/TP þ FN and specificity ¼ TP/TN þ FP, where TP,

TN, FP, FN stand for true positive, true negative, false

positive, and false negative, respectively [43]. We plot the

sensitivity and specificity vs. rescaled score for each of the

three superfamilies separately in Fig. 6. According to Fig. 6,

if a query protein sequence has no sequence-homolog in the

ASTRAL database but a structural-homolog is present, our

method has roughly 35% chance to detect it under optimum

conditions.

4. Conclusion

In this paper, we propose a structural threading method

which can be used to perform whole database or genome-wide

searches. The method is designed to focus predominantly on

Fig. 5. Comparison of experimental and predicted structure of CASP5

target T174_2 domain. (a) T174_2 domain structure experimentally

determined by J.G. Luz et al. [48]. (b) T174_2 domain structure submitted

to CASP5 by our group.

Fig. 6. Sensitivity and specificity of threading method. Performance of

threading method was evaluated using 34 protein sequences belonging

to three different superfamilies thread on a representative ASTRAL

database of structures (see text). (a) Sensitivity and specificity as a

function of Erel for superfamily a.1.1. (b) Sensitivity and specificity as

a function of Erel for superfamily b.1.1. (c) Sensitivity and specificity

as a function of Erel for superfamily c.2.1.
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structural information, making it particularly useful for

establishing linkages between structurally similar proteins

that have very low sequence similarity. This tool can

provide valuable information complementary to existing

sequence-based methods. Also, other groups interested in

testing their energy schemes can use this method to generate

competitive decoy sets as long as the dominant factor of

their energy form can be factorized. With some modifi-

cations, the method we propose can also be used in the study

of protein–protein interfaces.
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Appendix A. Eigenvectors and eigenvalues of contact

matrix

Given a n £ n symmetrical matrix C; its eigenvectors vi

and eigenvalues li satisfy the following relation

Cvi ¼ livi ð5Þ

Where index i goes from 1 to n:

For simplicity, we only consider matrix with non-

degenerate eigenvalues, by which we mean li – lj if i –
j: In this case, the eigenvectors are orthogonal to each other.

Because a constant times an eigenvector remains an

eigenvector of the same matrix, eigenvectors can be

normalized, therefore

vi·vj ¼
1 if i ¼ j

0 if i – j

(
ð6Þ

If C is a real and symmetrical matrix (i.e. Ci;j ¼ Cj;i), any n

dimension real vector s can be decomposed using vi

s ¼
Xn

i¼1

vivi ð7Þ

where vi ¼ s·vi is the overlap between vector vi and s

The matrix C can also be decomposed into the

contribution of its eigenvectors

C ¼
X

livi £ vT
i ð8Þ

In structural threading, the score has the form

E ¼ s·C·s ð9Þ

We are interested in which unit vector s (s·s ¼ 1) will

maximize E: we can rearrange vector indices i so that the

eigenvalues are in decreasing order: l1 , l2 , … , ln:

Because vector s is unitary, the overlaps satisfy the

following equation

1 ¼ s·s ¼
X
i;j

vivjvi·vj ð10Þ

using Eq. (6), we getX
i

v2
i ¼ 1 ð11Þ

Using Eqs. (7) and (8), we can decompose E (Eq. (9)) into

contributions of different eigenvectors

E ¼
X

i

liv
2
i ð12Þ

Because eigenvalues are in decreasing order: l1 , l2 ,

… , ln; we have E ¼
P
liv

2
i #

P
l1v

2
i ¼ l1: We used the

unitary condition in the last step. Note that the equal sign

can be achieved only when vi satisfies the following

conditions: v1 ¼ 1; and vi ¼ 0 if i – 1: By putting this vi

into Eq. (7), we get

s ¼ 1·v1 þ 0·v1 þ … þ 0·vn ¼ v1 ð13Þ

which means that the dominant eigenvector maximizes the

score.
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