Available online at www.sciencedirect.com

sc.“cs@p.“w

Polymer 45 (2004) 687-697

polymer

www.elsevier.com/locate/polymer

Three-dimensional threading approach to protein structure recognition

Haibo Cao®, Yungok Thm?, Cai-Zhuang Wang®, James R. Morris®, Mehmet Su®,
Drena Dobbs®, Kai-Ming Ho**

“Department of Physics and Astronomy, lowa State University, Ames, IA 50011, USA
®Ames Laboratory-U.S. DOE., lowa State University, Ames, 1A 50011, USA
“Department of Genetics, Development and Cell Biology, lowa State University, Ames, IA 50011, USA

Received 9 July 2003; received in revised form 16 October 2003; accepted 16 October 2003

Abstract

We describe a gapped structural threading method starting from aligning the query protein sequence to the dominant eigenvector of the
structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure
alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology
without relying on sequence similarity. The sensitivity and specificity of this method are discussed, along with a case of blind test prediction.
This method will provide a versatile tool for protein structure prediction and protein domain recognition complementary to existing tools that

rely on sequence homology.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Globular proteins form unique three dimensional struc-
tures under natural conditions. With few exceptions, the
native structure of a protein is determined only by its amino
acid sequence [1]. Nevertheless, to predict the unique native
structure of a protein given its amino acid sequence (i.e.
protein folding problem) remains an outstanding challenge.

Although naturally occurring proteins can have dramati-
cally different structures, related groups of proteins often
share a global folding topology. A number of databases
exploit this to classify known proteins according to their
structural similarities [2—4]. In the ASTRAL database [4],
for example, more than 27,000 known proteins are classified
in a hierarchical way. The five structural levels assigned by
this database are protein subfamilies, families, super-
families, folds, and classes in the order of decreasing
similarity among members. When two proteins belong to
the same family, they generally share similar biological
functions and exhibit significant sequence similarity which
can be detected by sequence comparison tools like
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PSIBLAST [5]. The average root mean square deviation
(RMSD) between different protein structures from the same
family is usually under 1A. At the superfamily level,
proteins have much higher RMSD (around 5A) and
generally low sequence similarity even though they share
a similar global folding topology. When a sequence
alignment method is used among these proteins, the
sequence identity generally falls into the ‘twilight zone’
(below 20% amino acid identity) where the linkages among
these remotely homologous structures cannot be estab-
lished. The structural threading method we introduce in this
paper aims to identify these remotely homologous structures
from other unrelated known structures.

When a protein is in its natural environment, it is
generally believed that the native state corresponds to the
global minimum of the free-energy of the protein molecule.
Studies of the protein folding process suggest a global
collapse followed by fine tuning of the structure around the
native global free-energy minimum [6—10]. From studies of
lattice models, Chan and Dill [11,12] proposed that proteins
correspond to highly atypical polymer sequences with a
well-defined unique free-energy minimum configuration
separated from other configurations by a relatively large
energy gap. A funnel-like energy landscape for protein
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folding was also proposed by Wolynes and co-workers [13].
Therefore, it is reasonable to assume that, when a protein
folds into a three-dimensional structure similar to its native
structure, it should have lower free energy compared with
misfolded structures. Thus, the native structure for a given
protein sequence can be inferred by threading the sequence
on known protein structures and calculating the energy for
each threading. If a target protein’s native structure is
similar to a known structure in the database, then the
threading energy should be lower than those of other
structures in the database. Thus the global fold of the protein
can be recognized.

Hendlich et al. [14] introduced, in 1990, a threading
method to test sequence-structure compatibility. A number
of schemes for structural threading have been proposed over
the past 13 years [15-22,29,30,46,47]. The basic idea of
threading is to assume that a query protein sequence takes
on the three-dimensional conformation of a template
structure. This is a one-dimensional to three-dimensional
(1D-3D) alignment since the ordering of the original
sequence is required to remain unchanged in the threading
process. The difficulty of this problem depends on whether
‘gaps’ are allowed in the alignment process or not. Early
work generally involved gapless threading [17,20] in which
insertions and deletions were not considered. For gapless
threading, it is possible to enumerate all possible align-
ments, however, generally this approach cannot provide
competitive decoys [23,24]. While it can pick out the native
fold from a collection of structures, it is not good at
identifying closely-related proteins even when the structural
similarity is high. When gaps are introduced in the
alignment process, a simple dynamic programming method
[25-27] cannot be used without significant modifications
due to the long-range (in terms of sequence separation)
interactions of the residues in the threaded structure. Godzik
and Skolnick [18] proposed the ‘frozen approximation,” in
which the residue’s environment is evaluated using the
native sequence of the threaded structure instead of the
query sequence. Then, a conventional dynamic program-
ming method can be used for the sequence-structure
alignment. This approach can be viewed as a way to make
a 1D structural profile on which the sequence can be
aligned. By modifying the structural profile according to the
alignment obtained in the previous step, the threading result
can be improved in an iterative manner [28]. A number
of threading schemes have been proposed using various
ways to obtain structural profiles [29,36,42,47]. Apart
from this profiling approach, Jones et al. [16] used a
double dynamic programming method to find the
optimum sequence-structure alignment. A search algor-
ithm for getting global optimum threading method was
also devised by Lathrop and Smith [30] using a branch-
and-bound approach.

When the optimum sequence-structure alignment is
achieved, the accuracy of the threading method depends on
the interaction scheme used for calculating the free energy of

the system. Many kinds of interactions are involved in the
protein folding process, including hydrophobic interactions,
hydrogen bond interactions, electrostatic interactions, and
covalent bond interactions. An interaction scheme, which
involves atomic details, is not suitable for the purpose of
structural threading because amino acids on the template
structure are replaced by different types of amino acids from
the sequence of query protein. Also, because threading studies
may examine many (20,000 or more) sequence-structure pairs,
an effective residue—residue interaction that captures the
dominant interaction of the protein folding process is
important for this purpose.

The driving force for protein folding has been the topic of
many discussions. Mirsky and Pauling proposed in 1936
that hydrogen bonds determine the structure of proteins
[31]. In 1950s, Walter Kauzmann proposed that the
dominant driving force for protein collapse is the hydro-
phobic interaction [32]. This point of view is adopted in
lattice-protein-models studies by Chan and Dill [11,12,39,
40]. In the simple H-P model, the interaction energy is a
two letter alphabet (H for hydrophobic residues and P for
polar residues) pairwise contact energy. When two residues
are within a specified cutoff distance (in lattice models,
contact is defined as when the two residues are neighbors to
each other), a contact energy is assigned according to the
characters of the residue pair (e.g. hydrophobic—hydro-
phobic (H-H) contacts have energy — 1, polar—polar (P—P)
and hydrophobic—polar (H-P) contacts have energy 0). The
total energy is the sum of all pairwise contact energies of the
conformation. A more detailed 20 alphabet residue—residue
interaction was proposed by Miyazawa and Jernigan [33,
34]. They applied a quasi-chemical approximation to the
relative abundance of different types of residue—residue
contacts in existing structures in the protein data bank
(PDB) to produce a table of residue—residue contact
energies among the 20 amino acids: the MJ matrix [33,
34]. Various other empirical interaction energy forms have
also been proposed and tested by different groups [20]. Li,
Tang, and Wingreen showed that the Miyazawa—Jernigan
(MJ) matrix can be factorized and interpret the resulting
form of the interaction to show that hydrophobic interaction
is the dominant factor in the MJ interaction matrix [38].
Local interactions to stabilize secondary structures in the
native state of the protein are also important in determining
the three-dimensional structures of proteins. Miyazawa and
Jernigan [35] showed that it is possible to distinguish native
structures from other decoy structures using a gapless
threading method when the secondary structure energy is
included [35]. Here we propose a two-step structural
threading method. In the first step, the query sequence is
aligned onto the target structure by optimizing the overlap
of the sequence vector and the dominant eigenvector of the
target structure contact matrix. In the second step, the
threading energy is calculated based on the alignment
obtained in the first step.
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2. Method
2.1. Energy functions

The interaction energy used in this paper follows the Li,
Tang, Wingreen [38] parameterization of the MJ matrix. In
the HP and the MJ models, the interactions are ‘contact’
interactions. In calculations of the free energy, a three-
dimensional protein structure can be represented by a
contact map. For a protein containing N residues, the
contact map is a N X N matrix with element (i,j) whose
value is 1 if the ith residue and jth residue are in contact,
otherwise, the element is set to 0. We choose 6.5 A as the
contact cutoff distance in accordance with the MJ matrix.

Through eigenvector analysis of the MJ matrix, Li, Tang,
and Wingreen showed that the interaction energy can be
written in the form

E = ci(q; + q) + ¢2q;q; + constant (1)

Thus, the 210 different residue —residue interactions in the
MJ matrix are not entirely independent but can be described
approximately by 20 parameters. This can be written in a
factorized form

E=c)qi+a)g+a)+K @)

where K and a are constants independent of residue type.
The additive constant K has no effect on the output of the
structural threading and will be eliminated hereafter in this
paper. From Eq. (2) we can redefine modified g values as
g; + a, then Eq. (2) can be written as: E = c¢,q,q; + K. We
will refer to this modified g value as ¢; in the rest of this
paper. If we represent a protein sequence vector s by the g
values of its amino acids ¢g;, for a given alignment after
threading a sequence on a template structure, the confor-
mation energy can be written as

E= ) ¢Cyq] 3)

ij=1

where C;; is the contact matrix of the structure and g, is the
aligned sequence vector §'.

2.2. Alignment

The problem of finding the best alignment of a query
sequence s for a structure with contact matrix C is to find a
transformation from s to s that optimizes the free-energy
function (3). The transformation has to be performed under
the following restrictions

1. Is'l = Isl i.e. no added residues can be introduced.
2. the ordering of the sequence must be kept.

Mathematically, if the residue types are not restricted to
the 20 naturally occurring amino acids and the two
threading restrictions are ignored, the sequence vector can

span the whole N dimensional real space. This modified
problem is readily solved. The optimum s’ is the dominant
eigenvector vy of the contact matrix C (see Appendix).
Under the threading restrictions, the phase space of §
consists of discrete points in the N dimensional space. If
the native structure of the query protein is similar to that of
the template structure being considered, we may expect the
resulting transformed vector s’ to be located close to v,.
We will discuss in detail the evidence for the correlation
between a protein sequence and the dominant eigenvector of
its native structure’s contact matrix in another publication.
Here we propose that the transformation we are seeking can
be obtained by maximizing the correlation between s’ and v,

/v 2
/(S/ Vo) @)
(s's)(vo-vo)
This is an alignment problem, and the dynamic program-
ming method in sequence alignment can be readily adopted
to solve this problem. The process can also be viewed as
using vy as a profile.

2.3. Iteration

The step of aligning with v, will produce a transformed
vector s’ which is close to vy. The ultimate solution s™* also
sits close to Vy. This makes us believe that the transform-
ation we get is close to the optimum solution. Further
improvements can be achieved by an iteration scheme
described below. The contact matrix energy function (3) can
be rewritten as E = s'-A, where A = C-s’. If the vector A is
known, the transformation from s to s’ is an alignment
problem. On the other hand, A can be found by using the
contact matrix C to transform the vector s’. This makes it
possible to use an iterative method to optimize the s = §
transformation we need. Starting with v, as the initial guess
for Ay, alignment with sequence vector s gives s;. From |
transformed by C, we can get A, = C-s|, and repeat the
process of alignment. This iterative procedure can be
repeated until A, and A, ;| converge. This iteration process
is similar to commonly used iterative methods for finding
the eigenvectors of a symmetrical matrix [41]. Because of the
involvement of the alignment process and the restrictions on
the choice of §, the convergence of the iterative process is not
mathematically guaranteed. In order to get a final converged
alignment, the initial guess is important. In our work, we used
for initial guesses not only the eigenvector with the largest
eigenvalue but also repeat the calculation with each of top four
eigenvectors of the contact matrix as well as the vector
corresponding to the frozen approximation. This improves the
chance of getting a converged result.

2.4. Gap penalty and size effects

For any method involving gapped alignment, the
outcome is affected by the penalty for insertion/deletion.
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Table 1

174 protein sequences used in self-recognition test

1531 1a0b 1a0i laa0 laa2
laf7 lag2 lag4 lah7 lahk
lal3 laly lamp lanu lanv
lawj laxn 1bdo Ibeo Ibgp
lcem Lctb 1chd lcid lesh
1div ldru leca lehs lerv
1gai lgin 1goh Igpc lgrj
1htp 1hxn lidk lido ligd
1jdw 1jli lkaz 1kid lknb
1lcl 1lit 11ki 1111 1Iml
Imxa 1Imzm 1nif Inls 1nom
lopr Ipax Ipbn Ipex Iphc
1poc 1pot 1ppn 1ppt 1prr
1res Irgs 1rie Irlw Irmd
1sly Isra 1svb Itca Itfe
1tul lubi luby luch lutg
1vls 1vsd lvve Iwer 1whi
1zin lzxq 2ilb 5p21

laa3 laac laba lad2 lads
laho 1ajj lak1 lako lakz
laol laop larv laua lawd
1bkf 1bor 1bpl 1btn 1bvl
letj leyx 1dad 1ddf 1dhs
leur 1fbr Ifdr 1fkx 1fna
lgvp lhed 1hfc 1hjp lhoe
lirk lirl liso litg lixh
lkte 1kuh lkvu 1lba 1lbu
11xa Imml 1mrj Imrp Imsk
1nox Inpk 1nre lois lopd
1php 1pkn 1plc 1plr Ipmi
1pta 1ptq 1quf 1ra9 lrcf
Irmg 1rnl 1rss Iryt Isig
1tfr 1tib 1tf 1tml Itsg
luxy lvee 1vhh 1vif lvin
1xnb lysc lytw lyub 1zid

In the work of Lathrop and Smith [30], the structure is
divided into two regions: regions with well-defined
secondary structures and loop regions. Insertions and
deletions are forbidden in the secondary structure
regions and no gap penalties are assessed in the loops.
We follow a similar approach. In our work, the
threading is divided into two steps. In the first step,
the sequence is aligned to the vector A, and then in the
second step, the score is calculated using the resultant
alignment. After some tests, we found that the
performance of the scheme is optimized when we
include gap penalties only in the alignment step and not
in the energy calculation step. In the alignment step,
insertion/deletion in the coil region have small penal-
ties, while gaps in the secondary structure region are
strongly penalized. Using this gap penalty system, we
allow the possibility of making big ‘jumps’ in the
threaded structure without serious disruption of the
secondary structure. Using our threading method, a
substantial portion of the threaded structure can be
removed without severe penalty as long as the contact
score stays high.

We adopt a similar treatment of size effects. Size
penalties are included only in the alignment step and not
in the final score calculation. We obtained an average size
for each amino acid from the PDB. If a residue in the
template structure is replaced by a residue in query sequence
whose size differs by 0.5 A or more in radius, the alignment
contribution for that alignment pair is reduced if that residue
has three or more contacts in the threaded structure. The
alignment score penalty is bigger as the discrepancy in size
increases.

The process of including gap and size penalties only in
the alignment step has the advantage of removing threading
alignments with unphysical gaps and packing from
consideration without putting too many parameters into
the energy calculations.

2.5. Secondary structure energy

Hydrogen-bonds in the secondary structure region play
an important role in helping to stabilize the native structure
[16]. Miyazawa and Jernigan pointed out in their paper [34]
that inclusion of secondary structure energy helps to
distinguish native structures from other decoy structures.
In this work, we use a ‘global fitness’ factor to take this
interaction into account. To calculate this factor, we first
obtain a secondary structure prediction for the query
sequence using secondary structure predictors such as
PSIPRED, PROF, JPRED, and SAM. The global fitness is
then defined as: f = N, — N_/N; where N, is the total
number of matches between the predicted secondary
structure and the threaded structure. N_ is the total number
of mismatches, and N, is the total number of residues in the
threaded structure selected in the alignment. We define a
modified energy of the form: Emodified — ofpthreading where o
is a parameter which can be optimized for accuracy of fold-
recognition.

2.6. Raw score and relative score

The negative of the modified energy obtained above is
taken to be the raw score for the threading. Thus, a high
score denotes a structure with favorable energy. The raw
score can contain systematic biases that lead to inaccuracies
in identifying sequence-structure relationships. In compar-
ing different structures, structures with more contacts tend
to have higher scores than structures with fewer contacts. In
comparing different sequences, sequences that have a higher
percentage of hydrophobic residues tend to have higher
scores. Thus, a high raw score does not automatically mean
a high compatibility between the sequence and the threaded
structure.

Work by Bryant and Altschul [37] and Meller and Elber
[42] showed that the accuracy of threading method can be
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improved by using the Z-score instead of the raw score for
the selection of candidates. In this approach, after a
sequence-structure threading is obtained, the query
sequence is randomly shuffled and threaded again on the
same structure. The Z-score is obtained by (E™" — E*®)/a,
where E™ is the result of the sequence-structure threading,
and E™® and o are the average and standard deviation
respectively of the results from the randomly shuffled
sequences. In order to eliminate some of the biases inherent
in raw scores, we take an approach similar to the Z-score
scheme by computing a relative score, which we use for our
selection criterion. The ‘relative score’ is defined by E™ =
E™ — E™ where E*® is the average score obtained by
randomly shuffling the protein sequence and threading again
on the target structure. We find that relative scores give
better discrimination among structures. The use of the
relative score may be rationalized from the thermodynamics
of protein folding. When a protein folds, it is not the raw
final energy which makes the structure different from its
denatured states, but the energy difference between the
native energy and that of the molten-globule states. For a
randomly-shuffled sequence, we would expect the native
structure to have a free energy similar to the molten-globule
configurations. Thus, we can model the average energy of
the molten globule by the average of the threaded energies
of the randomly shuffled sequences on the native structure.
E™ can be viewed as the ‘energy gap’ between the native
structure and its molten-globule competitors. E™ is
obviously closely related to the Z-score used in other
threading studies. However, operationally, relative scores
converge much more rapidly with the number of shuffled
sequences than the Z-score because E™! does not involve the
standard deviation (which converges much more slowly
than the average score).

3. Results and discussion

We have performed a series of tests to benchmark the
above method and scoring scheme. In the first test, we
randomly selected 174 proteins from PDB. These proteins
are listed in Table 1. We restricted ourselves to those
proteins which have experimental resolution better than
1.5Aanda single peptide chain to avoid any possible inter-
chain interactions. For each protein sequence in this set, we
perform threading calculations on all of the 174 template
structures, a process we call ‘cross threading’. The self-
threading score is compared with the best decoy threading
score. We found that the native structures always give better
scores (higher E™ values) than any decoys in this selected
protein set. The self-threading score exhibits a well-defined
linear relationship as a function of the sequence length as
shown in Fig. 1. The reason for the linear correlation is that
the number of contacts of a native protein structure is
roughly proportional to its sequence length. By taking this
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Fig. 1. Relationship between relative score £ and protein length. 174
randomly chosen proteins were self-threaded (see text). The relative score
for each protein is plotted against the number of residues of that protein. A
linear correlation between self-threading score and number of residues of
the protein can be observed.

into account, we can compare threading results of proteins
with different lengths.

A more challenging test for the threading method is
homolog-recognition. The above test of self-recognition
depends more on the scoring function than alignment
process because a gapless threading method would be able
to provide similar results. We choose nine families from the
ASTRAL database from which we selected 86 proteins

Table 2
86 proteins from nine families in ASTRAL database used in homolog-
recognition test

Domain Family  Protein sequence chosen

a.l.1.2 labm lash 1babB Ich4A 1d8uA
leca leco lew6A 1flp 1hlb
lirdA lit2A lithA 1kfrA 1vhbA
2gdm 2hbg 2lhb

a3.1.1 1c60A Icie lerg lctj 1flcA
1hh7A lirv lyeb

b.1.1.1 lahl lakjD leajA 1fo0A 1gya
1i85A Ineu 1qfoA

b.3.1.1 1a47-2 lac0 1b90A1 lcdg-2 leqyA

leyg-2 1d7fA2  1qhoA2  SbcaBl 8cgtA2

c.2.1.1 1la71A2  lagnA2  lcdoB2 le3eA2  1e3jA2
1gpjA2  lkevA2  1qorA2 1ykfC2

c.3.1.1 IcjcAl 1djnA2  1h7wA3  1h7xA3

d.1.1.1 laqzA lay7A Ibu4 1bujA 1fus
1rds 1rtu lyvs

d.3.1.1 laec laim latk 1bp4 1cjl
lepjA lcqdD lev8 1dkiB 1fhOA
lgecE 1meg 1pbh 1qdgA lyal

e.l.1.1 la7cA latu limvA 1jtHA 1gmnA
Isek
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Protein structures used in remote-homolog-recognition test

Domain family Sequence in the family Superfamily Structures in the Superfamily
a.l.1.2 1fip 1kfrA 2hbg labm a.l.l 1phnA lcpcA 1i7yA
leco 2gdm 1d8uA lirdA 1ghOA lallA 1b33A
1babB 1ch4A lit2A 2lhb 1liaA 1b8dA 1qgwC
lash lithA 1hlb 1vhbA 1kr7A
lew6A
b.1.1.1 lahl lahl lakjD leajA b.1.1 1frtAl 1bmg la6zB1 11d9A1
1fo0A lgya 1i85A Ineu 1b3jAl Icl6B1 lexuAl lexuBl1
1qfoA ligtA2 1ij9A1 2ncm 1tlk
Itnn Iwiu 1tiu 1gl4B
1qtyY IwwaX ThefX 1fcgAl
1f2qA1l lefxD1 1g0xA1 1f45A1
1jbjA2 1leh9A1 levuAl 1ccOE
lgdf 1ksgB layrAl 1a02N1
1bftB 1h6uAl lehxA 1im3P
LjjuA3
c2.1.1 la71A2 lagnA2 lcdoB2 le3eA2 c.2.1 1kvq 1fjhA 1bdb laduA
1e3jA2 1gpjA2 1kevA2 1qorA2 lgcoA 1h5qC 1i01A laelA
1ykfC2 1dohA 1hdoA 1hudA 1gpdGl1
IbrmA1l 1dapAl larzAl 2nacAl
1qp8ALl 1gdhAl 1psdAl 1sayAl
1f8gAl 1b3rAl ImldAl lhyhB1
lhyeAl 1qgmgA2 1f0yA2 1dljA2
levyA2 1ks9A2 LjaxA IbgvAl
1lehAl 1bw9Al la4iB1 lee9Al
1do8Al lid1A legiAl
listed in Table 2. Proteins belonging to the same family are
homologous and generally have greater than 20% sequence
identity, thus a sequence alignment method (e.g. PSI-
BLAST) can detect the similarity among them. We
R Y 2 ' ' ' performed a cross threading test using this 86 protein set.
[ ] o® h . .
‘Y . For each query sequence, E;°™ is defined as the highest
L] . .
sl * : . | threading score among the homologous structures, ES is
e oo o defined as the best threading score among all the rest of the
g oo ¢ . decoy structures. We rescale EM™ and E° according to
g 06 #q @ ® . E their threading score on native structures E}*. A plot of
] e oo EMom/EMt agqinst ES/EM is shown in Fig. 2. For 83 out of
s °. 86 cases, "™ is clearly much higher than E%°. For the
204 r . . ] remaining three cases, the native structure cannot be
o . . . . .
2 So distinguished from the best decoy structure. This might
L] . . .
@ el o * be a result of inaccuracy of the scoring function we used.
’ The above tests give us confidence that when a given
template structure has a native sequence which is similar to
0 . . . . the query protein sequence, our method can distinguish it
0 0.2 0.4 0.6 0.8 1

Score of decoy/Score of native

Fig. 2. Cross threading test of homolog recognition. 86 protein sequences
are chosen from nine different families in the ASTRAL database. Each
sequence is threaded on the structure of the other 85 proteins. The highest
threading score obtained when a sequence is thread on protein structures in
its own family is used to represent the homologous threading score E™™.
The decoy threading score E%°, is the highest threading score obtained
when the sequence is threaded on decoy structures (not in the same family).
Homologous threading score E™™ is plotted against decoy threading score
E%* using the self-threading score E™" as unit for each sequence. Points
above the diagonal represent cases in which structural homologos are
distinguished from decoys.

from random decoy structures without using the sequence
information. In the next test, we want to investigate the fold
recognition capability of our method for proteins with low
sequence similarity. It is well known that structural
similarity does not necessarily require sequence similarity.
Proteins in the ASTRAL database, which belong to the same
superfamily but different families generally share similar
global structure, but have low sequence identity not
detectable by sequence comparison methods. In some
cases, even proteins in the same family have such divergent
sequences that the structural homology cannot be detected
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by sequence-based recognition methods. For example, the
TNF-like family includes both tumor necrosis factor (TNF)
ligand domains as well as complement 1q (clq) proteins.
The structural relationship between these two families of
proteins was not recognized by sequence-based methods
such as PSIBLAST and hidden-Markov-model methods
such as PFAM. Because we designed our method to use only
structural information, we believe that it can distinguish
such similar structures from random decoy structures. To
test this, we chose three superfamilies (a.1.1, b.1.1, c.2.1)
from ASTRAL database. They belong to three different
folding classes: all alpha (a), all beta (b) and mixture of
alpha/beta (c, which is mainly beta sheets). One family is
chosen from each of these superfamilies: a.1.1.2, b.1.1.1,
and c.2.1.1 respectively. A test set of 34 sequences listed in
Table 3 were chosen from the three selected families.
Structures belonging to the same superfamily but different
families are selected as structural homologs (see Table 3).
Each sequence from the chosen sequence set is threaded on
all the chosen structures. For each sequence in the test set,
we define EM™ as the threading score obtained when the
sequence is threaded on structures within the same family.
In order to assess the noise background, we used the 86
protein structures in the homolog-recognition test to provide
decoy structures. E%¢ is the highest threading score among
all decoy structures (i.e. structures not in the same
superfamily as the test sequence). The remote homologous
threading score E™™° is the highest threading score
obtained on structures within the same superfamily but
not in the same family. Histograms of [hom  premote - pdec
normalized by the self-threading score are plotted in Fig. 3.
Comparing Fig. 3(a) and (c), we can see that the distribution
of E™™ is well separated from the E° distribution. This
result is very similar to that obtained in the homolog-
recognition test described above. The wide distribution of
the EM™ could be the result of the inaccuracy in either the
alignment step or the scoring scheme.

The result of the remote homolog recognition can be seen
by comparing Fig. 3(b) with Fig. 3(c). The center of
distribution of E®™® is well separated from that of E%,
although the high score tail of E%¢ overlaps with the low
score tail of E™° Thus, at least half of the remote
structural homologs can be recognized using this structural-
threading method.

Because the above tests are done using an existing
database of proteins with known structures, we cannot
ignore the fact that the results may be to some extent biased
by the existence of the final structure in the known database.
The CASPS5 [44] competition provided us with a chance to
do a ‘blind test’ of our threading method. In CASPS5,
sequence of target proteins whose structures have not yet
been published are given to participants for prediction. We
will discuss one of our successful predictions. The target
T174 is one of the difficult targets according to the CASP5
assessment. There are two domains in this protein structure:
T174_1 and T174_2. Of all the predictions submitted to
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Fig. 3. Cross threading test of remote homolog recognition. 34 protein
sequences belonging to three different families are chosen from ASTRAL
database. Histograms of E"™ (a) E®™® (b) and E%* (c) normalized by self-
threading score are shown. (a) E'°™ : each of the 34 protein sequences is
threaded on protein structures in its own family. The highest threading
score of each sequence is plotted in this histogram. (b) E*™® : each of the
34 protein sequences is threaded on protein structures belonging to the same
superfamily but different family (i.e. remote homologs). (c) E% : each of
the 34 protein sequences are threaded on structures randomly chosen from
other superfamilies (decoys). In all histograms, the highest threading score
for each sequence is plotted.

CASPS5 by various groups, domain T174_1 has the lowest
average score and correct alignment percentage, and the
T174_2 domain ranks in the lowest 11% of average scores
among the 83 domains predicted in CASPS.

Structurally, the T174_2 domain belongs to the d.14.1.5
ASTRAL family, but has very low sequence identity (10%)
with its structural homologs. In our blind test prediction of
T174, we prepared a representative structure database for
threading by selecting structures from the ASTRAL
database. When a family in ASTRAL database has more
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Fig. 4. Distribution of E™ scores for CASP5 targer T174_2. Segments of T174 sequence with length 120 (continuous) were threaded on representative
ASTRAL database structures (see text). For each structures, the highest segment-structure alignment E™' score is used to represent the threading score of that
structure. Histogram of the threading energies of all the representative database structures is plotted. The high relative score tail of this histogram is enlarged in
the inset. The dark bins in the inset belong to the structures from ASTRAL family d.14.1.5.

than 20 protein structures, we randomly choose 20 among
them to reduce the redundancy but retain enough repre-
sentatives to collect sufficient statistics to overcome the
noise from decoy structures. Around 15,000 structures were
included in our template structure dataset.

In the CASP5 blind test, the entire T174 sequence is
provided without any knowledge of the domain boundary.
We selected all continuous 120 amino acid segments of
T174 sequence shifted by intervals of five residues. The
choice of 120 is based on examination of the number of
ASTRAL domains as a function of domain size. There is a
peak in the distribution around 120. Thus we have a good
chance of including a large portion of a single domain of the
T174 sequence in some of our cuts. Every segment is
threaded against all of the template structures to produce a
segment-structure alignment score. For each structure, the
threading energies of all segments on that structure are
compared. The highest E™* score is used to represent
the threading score of the structure. A histogram showing
the distribution of E™* scores is plotted in Fig. 4. The
histogram takes a shape similar to a normal distribution. The
best score was obtained by threading one of the partial
sequences on a domain structure, which belongs to the
ASTRAL family d.14.1.5. The high score end of the
histogram is plotted in the inset of Fig. 4. The abundance of
the d.14.1.5 family structures (indicated in black) in the high
end of the distribution indicates that the high threading score
for d.14.1.5 is not due to statistical noise. The aligned part of
the segment is then extended to the whole sequence and
submitted to the CASP5 as our prediction for the T174
structure. Fig. 5 compares the experimentally determined

structure (a) of the T174_2 domain with our prediction (b).
There are clear global similarities, with close arrangements
of a helix and 3 sheet. The Dali Z-score [45] for structural
similarity between the two structures is 8.9 (The higher the
Dali Z-score the more similar the structures. A Dali Z-scores
of 2.0 or higher indicates structure similarity between the
two structures being compared). The alignment is not
completely right, about 34% of the residues are aligned in
the correct positions.

In order to analyze the sensitivity and specificity of this
method, we used the 34 proteins from the remote homolog
recognition test as our query sequences, and the representa-
tive structures used in CASP5 as a structure database.
Structures that do not belong to the same superfamily
as a query protein’s native structure, are treated as
decoy structures for the query protein. We excluded decoy
structures with significant structural similarity to native
structures (i.e. Dali Z-score greater than 2.8) of the query
proteins (if the target structure is not in the same
superfamily as the query sequence). This resulted in a set
of more than 10,000 structures with much more competitive
decoy structures than the dataset used in the remote
homolog recognition test. We rescaled the score for each
query sequence threaded on a template structure according
to its threading score on its native structure. For a given
cutoff score, a ‘true positive’ is obtained when a query
sequence threaded on a remote homolog structure (within
the same superfamily as the query sequence in ASTRAL
database, but in a different structural family) results in a
score higher than the cutoff. Otherwise, it is treated as a false
negative. Similarly, when a query sequence threaded on a
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(b)

Fig. 5. Comparison of experimental and predicted structure of CASP5
target T174_2 domain. (a) T174_2 domain structure experimentally
determined by J.G. Luz et al. [48]. (b) T174_2 domain structure submitted
to CASPS5 by our group.

decoy (i.e. not similar) structure results in a score higher
than the cutoff, it is treated as a false positive. Otherwise, it
is treated as a true negative. We define sensitivity =
TP/TP + FN and specificity = TP/TN + FP, where TP,
TN, FP, FN stand for true positive, true negative, false
positive, and false negative, respectively [43]. We plot the
sensitivity and specificity vs. rescaled score for each of the
three superfamilies separately in Fig. 6. According to Fig. 6,
if a query protein sequence has no sequence-homolog in the
ASTRAL database but a structural-homolog is present, our
method has roughly 35% chance to detect it under optimum
conditions.

4. Conclusion
In this paper, we propose a structural threading method

which can be used to perform whole database or genome-wide
searches. The method is designed to focus predominantly on
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Fig. 6. Sensitivity and specificity of threading method. Performance of
threading method was evaluated using 34 protein sequences belonging
to three different superfamilies thread on a representative ASTRAL
database of structures (see text). (a) Sensitivity and specificity as a
function of E™ for superfamily a.1.1. (b) Sensitivity and specificity as
a function of E™ for superfamily b.1.1. (c) Sensitivity and specificity
as a function of E™ for superfamily c.2.1.
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structural information, making it particularly useful for
establishing linkages between structurally similar proteins
that have very low sequence similarity. This tool can
provide valuable information complementary to existing
sequence-based methods. Also, other groups interested in
testing their energy schemes can use this method to generate
competitive decoy sets as long as the dominant factor of
their energy form can be factorized. With some modifi-
cations, the method we propose can also be used in the study
of protein—protein interfaces.
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Appendix A. Eigenvectors and eigenvalues of contact
matrix

Given a n X n symmetrical matrix C, its eigenvectors v;
and eigenvalues A; satisfy the following relation

Cv; = Av; ®)

Where index i goes from 1 to n.

For simplicity, we only consider matrix with non-
degenerate eigenvalues, by which we mean A; # A; if i #
Jj. In this case, the eigenvectors are orthogonal to each other.
Because a constant times an eigenvector remains an
eigenvector of the same matrix, eigenvectors can be
normalized, therefore

1 ifi=j
V,"Vj - (6)
0 ifis# ]
If C is a real and symmetrical matrix (i.e. C;; = C; ), any n
dimension real vector s can be decomposed using v;

S = i w;V; (7)
i=1

where w; = s-v; is the overlap between vector v; and s
The matrix C can also be decomposed into the
contribution of its eigenvectors

C=DAvixv] (8)
In structural threading, the score has the form

E=sCs )]

We are interested in which unit vector s (s-s = 1) will
maximize E. we can rearrange vector indices i so that the
eigenvalues are in decreasing order: A} < A, < ... <A,
Because vector s is unitary, the overlaps satisfy the
following equation

l=ss=> wuvV, (10)
iy

using Eq. (6), we get
Swi=1 (n

Using Egs. (7) and (8), we can decompose E (Eq. (9)) into
contributions of different eigenvectors

E=> Noj (12)

Because eigenvalues are in decreasing order: A; < A, <
... <A, wehave E =Y Aof =Y\ o = );. We used the
unitary condition in the last step. Note that the equal sign
can be achieved only when w; satisfies the following
conditions: w; = 1, and w; = 0 if i # 1. By putting this ;
into Eq. (7), we get

s=1vi4+0vi+..4+0v,=v, (13)

which means that the dominant eigenvector maximizes the
score.
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